
DATA
STRUCTURE
ANSWERS

- By Dipesh Adelkar

1.1 Perform Binary Search In Array

Suppose we have this array (S) and we have to find 40
lb = 1 , ub = 5
middle index = (5 + 1)/2 = 3
S[middle index] = 30 < 40
So, we will set lb as 4 and ub as 5, Middle index = (5 + 4)/2 = 4
S[middle index] = 40 = Desired element, therefore we will stop
search

Binary search can be applied when the array is sorted
Binary search works like dictionary
To use binary search, we need to find the index of middle element
Middle index = (ub + lb)/2

10 20 30 40 50
1 2 3 4 5

Set start = lb, end = ub
Repeat steps 3 and 5 while start <= end
 Set middle = (start + end)/2
 If S[middle] = data then
 Print “element found”
 Exit
 If S[middle] > data then set
 Start = middle - 1
 Else
 Start = middle + 1
End loop
Exit

1

2

3

4

5

7

6

1.2 What is data structure?
explain following data types (linear/non-linear,
static/dynamic, homo/non-homo)

Elements in a linear structure forms a linear sequence
Example of linear data structure : array, linked list, queue
Elements in non linear data structure do not form a linear sequence
E.g., tree and graph

Homogeneous refers to elements of same data type e.g., array
Non homogeneous refers to elements of different data type e.g.,
linked list
Other data structures such as stack, queue and tree can be
homogeneous or non-homogeneous depending on weather they are
implemented using array or using linked list

Static data structure refers to storing the data elements in a
consecutive memory location
e.g., array
dynamic data structure refers to the data elements in non-
consecutive memory location
e.g., linked list

A data structure is a specialized format for organizing, processing,
retrieving and storing data

1.4 Explain Bubble Sorting of Array

Sorting of array refers to arrange the elements of the array in some
logical order
this order can be in increasing or decreasing

Here S[1] < S[2] < S[3] < S[4] < S[5]

10 20 30 40 50
1 2 3 4 5

S

3 2 9 4

2 3 9 4

2 3 4 9

Here a loop is executed for n - 1
times
we have used a nested loop which is
executed for certain steps
later we have compared the two
elements and exchanged if required

Repeat For p = 1 to n - 1
 For i = 1 to n - p
 If S[i] > S[i + 1] Then
 Exchange S[i] with S[i + 1]
 [End If]
 [End Loop]
[End Loop]
Exit

1

2

3

4

1.5 Perform Insertion In Array

In this algorithm we are moving all the elements from k to n to one
position at the right.
When all the elements are moved one position to the right, we insert
new element at kth position
And then increase the size of array by 1

Insertion is to add new element in the array
The new element can be added anywhere in the array
Only possible if there is space for element in array
Algorithm : inserting ‘New’ element at k where size of array ‘S’ is n

10 20 30 40 __

10 20 __ 30 40

10 20 99 30 40

while i = n to k
 Set S[i+1] = S[i]
 Set i = i - 1
 [end loop]
Set S[k] = New
Set n = n + 1
Exit

1

2

3

4

Perform Deletion In Array

In this algorithm we are moving all the elements from k to n to one
position at the left
And then decrease the size of array by 1
Suppose we have to remove 30

Deletion is to delete element in the array
Algorithm : Deleting element at k where size of array ‘S’ is n

10 20 30 40 50

10 20 40 50 __

While 2 and 3 for i = k to n
 Set S[i] = S[i + 1]
 Set i = i + 1
 [end loop]
Set n = n - 1
Exit

1

2

3

1.6 Explain Memory Representation of array

The elements in the array are stored in consecutive memory
location
Let’s consider an array with Base(S)

Address of any other element of an array S can be calculated as
Loc(Sk) = Base(S) + w(k – lb)
Sk is Kth element of array and Loc(Sk) is location of Sk
Base(S) is the base address of the array
w is the size of data type of the array element
(k - lb) is the distance of k from lower index(first index)

Example
Here Base(S) = 100 , w = 4 , lb = 0
Loc(Sk) = Base(S) + w(k – lb)
Loc(S3) = 100 + 4(3 – 0) ….finding memory location of
elements at index 3
Loc(S3) = 100 + 4 x 3
Loc(S3) = 100 + 12
Loc(S3) = 112
Hence element at index 3 is stored at location 112 in memory

2.1 Explain structure of Linked List

Linked list is the linear collection of elements at nonconsecutive
memory location
In linked list the element/data is stored in a node
Node has two partitions one to store data and another one which
stores address/location of the next node
Last node of the linked list has Null value as the next which defines
end of linked list

The 1st node is held by special pointer known as begin/Start
1st node points to the address of 2nd node i.e., 14764
2nd node points to the address of 3rd node i.e., 5096
This happens till the last node which points to Null value

2.2 Traversing of Single linked List and find
largest element in the list

Here we check if the linked list is empty or not
if the list is not empty we execute step 2 , Pointer is assigned to the
first node which carries the address of the node
Info part of the current element gets compared with the max value
and if the max is less than info, info value is stored in max and then
the pointer is assigned to the address of next node
once pointer encounters Null value the loop ends

It refers to visiting every element in linked list
Traversing an linked list

If Begin = Null Then
 Print “Linked list is empty”
 Exit
 [End If]
Set Pointer = Begin
Set max = 0
Repeat while Pointer != Null
 if max < Pointer -> Info
 max = Pointer -> Info
 assign Pointer = Pointer -> Next
[End Loop]
Print : max
Exit

1

2

3

4

5

6

2.5 Algorithm to find the position of the
given element of data in two way linked list
by traversing it from end to beginning

If End = Null Then
 Print “Linked List is Empty”
 Exit
[End If]
Set Pointer = End
Repeat while Pointer != Null
 If Pointer -> Info = Data
 Print “Data found at position”: Pointer
 Exit
 Set Pointer = Pointer -> Pre
[End Loop]
Exit

1

2

3

2

2.6 Short note on Header linked list

Header Linked list is a special kind of linked list which contains a
special node at the beginning of the lit
This Special node is called as a head node
This Head node contains some information about regarding the
Linked List
e.g. Number of nodes
Header Linked List can be categorized into 4 parts

Grounded Header Linked List
Circular Header Linked List
Two way Header Linked List
Circular Two way Header Linked List

Grounded Linked List - the last node contains Null in its Next Pointer

Circular Linked List - The last node points back to the Header node

Two Way Header Linked List - A Header node can also be Inserted
in a Two way Linked List

Two Way Circular Header Linked List - The Last node of the Two
way Linked list points back to the Header node

3.1 What is Stack ?algorithm to push in Linked List

Stack is also called as ‘LIFO’ (Last In First Out) It means that the
last item added to the stack will be the first item to be removed from
the stack
In Stack Insertion and Deletion takes place from only one end
In Stack insertion operation is called as “PUSH”
and deletion operation is called as “POP”

12
42
83
74

PUSH - Push operation refers to insertion of a
new element into the stack
we can perform PUSH operation only if the
stack is not full i.e. the stack should have
sufficient space for new element
If the stack is already full and when we try to
insert new element it is called as “Stack
Overflow” condition

POP - Pop operation refers to removal of an element from the top
of the stack
We can perform POP operation only if the stack is not empty
We need to make sure that the Stack is not empty before applying
the POP operation
When we try to perform POP operation while the stack is empty it
is called as “Stack Underflow” condition

12
42
83
74

If Free = Null then
 print “Stack is already full”
 Exit
[End if]
Set New = Free and Free = Free -> Next
Set New -> Info = Data
and New -> Next = Top
Set Top = New
Exit

1

2

3

4

5

12
42
83
74

99

3.3 Algorithm for Push and Pop
operation in Stack
PUSH operation

12
42
83
74

12
42
83
74

99

12
42
83
74

If Top = Max then
 print “Stack is already full”
 Exit
[End if]
Set Top = Top + 1
Set S[Top] = Data
Exit

1

2

3

4

12
42
83
74

99

 POP operation

If Top = Null then
 print “Stack is Empty”
 Exit
[End if]
Set Data = S[Top]
Set Top = Top - 1
Exit

1

2

3

4

3.4 How Insertion and Deletion take place in
Queue With Example

Queue is a Linear collection of elements in which insertion takes
place at one end known as “rear” and deletion takes place at
another end known as the “front” of the queue
The elements of the queue are processed in the same order as they
were added into the queue, that’s why queue is also known as FIFO
(First in First out)
Two types of operations are performed in a queue

Insertion (rear)
Deletion (front)

If the queue is already full and when we try to insert new element in
the queue this condition can be called as “Overflow” condition
If the queue is empty and if we try to delete an element from the
queue this can be called as “Underflow” condition

__ __ __

10 __ __

10 20 __

10 20 40

10 20 40

20 40 __

40 __ __

__ __ __

3.6 Explain Priority Queue using Linked List
with Example

Priority Queue is the kind of queue data structure in which insertion
and deletion operation are performed according to some special
rule rather than FIFO
there are three ways to represent priority queue

Priority queue using linked list
priority queue using multiple queues
priority queue using heap structure

Priority Queue using linked list :
in this priority queue the node of the linked list is divided
into three parts
Info : this part contains the data element
Priority : this part hold the priority number of the element
Next : this part holds the address of the next node

Info

Priority
Number

Next

4.1 Sort the Following using Selection Sort :
22,35,17,08,13,44,05,28

Selection sorting algorithm is also called as in-place comparison
sort
in-place means that this algorithm does not take extra space for
sorting the elements of the array
in this algorithm the smallest element of the array is replace with the
element at the first position
Then the second smallest element is swapped with the element at
2nd position
this process continues until the entire array is sorted

22 17 08 441335 05 28

2217 08 44133505 28

221708 44133505 28

221708 4413 3505 28

221708 4413 3505 28

221708 4413 3505 28

1st step : 5 is the smallest element so we will exchange its position
with the element at position 1
2nd Step : 08 is the second smallest element so we will exchange
its position with element at position 2
We will continue this until the entire array is sorted

221708 4413 3505 28

221708 4413 3505 28

4.2 Algorithm of selection sort technique

for i = 0 to i < n-1
 set min = 1
 for j = 1 to j <n
 if (a[j] < min)
 min = a[j];
 if (min! = 1)
 swap (a[i] , min)
Exit

Selection sorting algorithm is also called as in-place comparison
sort
in-place means that this algorithm does not take extra space for
sorting the elements of the array
in this algorithm the smallest element of the array is replace with the
element at the first position
Then the second smallest element is swapped with the element at
2nd position
this process continues until the entire array is sorted

The code uses two nested loops to compare elements in an array
'a' and perform swapping operations.
The outer loop iterates from i = 0 to i < n-1, where 'n' is the size of
the array.
Inside the outer loop, 'min' is set to 1
The inner loop iterates from j = 1 to j < n.
Inside the inner loop, it checks if the element at index 'j' is less than
'min'. If true, it sets min = a[j] and it swaps min and a[i]

4.5 Explain Binary search Tree with Example

A binary search tree (BST) is a data structure used for
organizing and storing a collection of elements, such as
numbers, in a way that allows for efficient insertion, deletion,
and searching of elements. The key characteristic of a binary
search tree is that each node in the tree has at most two child
nodes: a left child and a right child
All nodes in its left subtree have values less than the node's
value.
All nodes in its right subtree have values greater than the
node's value.
This property ensures that elements are organized in a sorted
manner within the tree, making it easy to search for specific
values.

Now, we have a binary search tree that satisfies the binary
search tree property, making it easy to perform operations like
searching for elements.
For example, searching for the value 6 would involve
comparing 6 to the root (8), then going to the left child (3), and
finally to the right child (6), ultimately finding the desired value.
This property allows for efficient searching and other
operations like insertion and deletion.

Example :

 8
 / \
 3 10
 / \ \
 1 6 14

5.1 What is Hashing? Explain Mid Square and
Division remainder method with Example

 Hashing is a technique or process of mapping keys, and values
into the hash table by using a hash function
Hashing is used to overcome collision of elements at same address

Mid Square Method
in this method the key value is squared and the digits
are taken from the middle of the squared value
This middle 3 digits values of the square of the key is
the Relative address

Key value Square of Key vale Relative address

5010 25100100 100

5016 25160256 160

5301 28100601 100

5400 29160000 160

Division Remainder Method
in this method the the addresses are n=mapped by dividing
the key values by the number of available addresses and
the remainder is taken as the relative address

Key value
Remainder after dividing the

key by 997

1098 101

1120 123

1185 118

1230 233

5.2 Explain the Following collision resolution
Techinique with Example (Linear Probing) :
Hash table of size 10
Keys are 33,101,99,83,93

Linear probing is a collision resolution technique in hash tables
where, upon a collision, it searches for the next available slot by
incrementing linearly until an empty slot is found.

Hash(K, p) = [H(K) + p] mod m

p is probe number which can be 0,1,2,..., m-1
n is the size of the hash table
Keys : 33,101,99,83,93

K = 33
Hash(K, p) = [H(K) + p] mod m
Hash(K, p) = [33 mod 10 + 0] mod 10
Hash(K, p) = 3 mod 10
Hash(K, p) = 3

K = 101
Hash(K, p) = [H(K) + p] mod m
Hash(K, p) = [101 mod 10 + 0] mod 10
Hash(K, p) = 1 mod 10
Hash(K, p) = 1

K = 99
Hash(K, p) = [H(K) + p] mod m
Hash(K, p) = [99 mod 10 + 0] mod 10
Hash(K, p) = 9 mod 10
Hash(K, p) = 9

__
33
__

__

__
__
__

99

101

__0

1

2

3

4

5

6

7

8

9

K = 83
Hash(K, p) = [H(K) + p] mod m
Hash(K, p) = [83 mod 10 + 0] mod 10
Hash(K, p) = 3 mod 10
Hash(K, p) = 3

since 3 is occupied by 33 we will set p = 1
K = 83
Hash(K, p) = [H(K) + p] mod m
Hash(K, p) = [83 mod 10 + 1] mod 10
Hash(K, p) = 4 mod 10
Hash(K, p) = 4

K = 93
Hash(K, p) = [H(K) + p] mod m
Hash(K, p) = [93 mod 10 + 0] mod 10
Hash(K, p) = 3 mod 10
Hash(K, p) = 3

since 3 is occupied by 33 we will set p = 1
which will give 4 and 4 is also occupied so
set p = 2

K = 93
Hash(K, p) = [H(K) + p] mod m
Hash(K, p) = [93 mod 10 + 2] mod 10
Hash(K, p) = 5 mod 10
Hash(K, p) = 5

__
33
83

93

__
__
__

99

101

__0

1

2

3

4

5

6

7

8

9

5.3 Explain Adjency List with Example
(Linked list Representation)

The below undirected graph has 3 vertices. So, an array of list will be
created of size 3, where each indices represent the vertices. Now,
vertex 0 has two neighbours (i.e, 1 and 2). So, insert vertex 1 and 2 at
indices 0 of array. Similarly, For vertex 1, it has two neighbour (i.e, 2
and 1) So, insert vertices 2 and 1 at indices 1 of array. Similarly, for
vertex 2, insert its neighbours in array of list.

The below directed graph has 3 vertices. So, an array of list will be
created of size 3, where each indices represent the vertices. Now,
vertex 0 has no neighbours. For vertex 1, it has two neighbour (i.e, 0
and 2) So, insert vertices 0 and 2 at indices 1 of array. Similarly, for
vertex 2, insert its neighbours in array of list.

5.5 What is Adjency Matrix? Generate
Adjency Matrix of the undirected Graph

Undirected : Initially, the entire Matrix is initialized to 0. If there is an
edge from source to destination, we insert 1 to both cases
Directed : Initially, the entire Matrix is initialized to 0. If there is an
edge from source to destination, we insert 1 for that particular
destination

A B E

G

FDC

a b c d e f g

a 0 1 1 1 0 0 0

b 1 0 0 1 1 0 0

c 1 0 0 1 0 0 0

d 1 1 1 0 1 1 0

e 0 1 0 1 0 1 1

f 0 0 0 1 1 0 1

g 0 0 0 0 1 1 0

5.6 Find the minimum spanning tree for the
graph using Prims Algorithm

0

1 3

4 5

2

6

23

3 6

1

5

6

5

4

0

1 3

4 5

2 23

3

1

4

Answer :

Distance = 1 + 3 + 3 + 4 + 2 = 13

