
DATA
STRUCTURE
NOTES

- By Dipesh Adelkar

Explain One Dimensional Array

An array is a linear collection of finite number of homogeneous
elements
Elements in an array are in a sequence
The elements are homogeneous which means the elements are of
similar datatype
All the elements in an array are stored in consecutive memory
location
Example of array

Here we have an array named ‘Arr’ with index starting with 0 till 5
The number of elements in an array are called its size
Size of array can be calculated as
Size of array = ub – lb + 1
In the above example ub(upper bound, highest index) is 5 and
lb(lower bond, lowest index) is 0
So, size of array = (5 – 0) + 1 = 6

Explain Memory Representation of array

The elements in the array are stored in consecutive memory
location
Let’s consider an array with Base(S)

Address of any other element of an array S can be calculated as
Loc(Sk) = Base(S) + w(k – lb)
Sk is Kth element of array and Loc(Sk) is location of Sk
Base(S) is the base address of the array
w is the size of data type of the array element
(k - lb) is the distance of k from lower index(first index)

Example
Here Base(S) = 100 , w = 4 , lb = 0
Loc(Sk) = Base(S) + w(k – lb)
Loc(S3) = 100 + 4(3 – 0) ….finding memory location of
elements at index 3
Loc(S3) = 100 + 4 x 3
Loc(S3) = 100 + 12
Loc(S3) = 112
Hence element at index 3 is stored at location 112 in memory

Perform Traversing in Array

We have assigned the value of lower bound to i
We have used a loop until the value of i reaches upper bound
In step 3 we have printed the ith element
In step 4 we have incremented the value of i by 1

It refers to visiting every element in an array
Traversing an Array

10 20 30 40 50

set i = lb
while i <= ub
 print s[i]
 set i = i + 1
[end loop]
Exit

1

2

3

Perform Insertion In Array

In this algorithm we are moving all the elements from k to n to one
position at the right.
When all the elements are moved one position to the right, we insert
new element at kth position
And then increase the size of array by 1
Suppose we have to place 10 at the place of 40

Insertion is to add new element in the array
The new element can be added anywhere in the array
Only possible if there is space for element in array
Algorithm : inserting ‘New’ element at k where size of array ‘S’ is n

10 20 30 40 __

10 20 __ 30 40

10 20 99 30 40

while i = n to k
 Set S[i+1] = S[i]
 Set i = i - 1
 [end loop]
Set S[k] = New
Set n = n + 1
Exit

1

2

3

4

Perform Deletion In Array

In this algorithm we are moving all the elements from k to n to one
position at the left
And then decrease the size of array by 1
Suppose we have to remove 40

Deletion is to delete element in the array
Algorithm : Deleting element at k where size of array ‘S’ is n

10 20 30 40 50

10 20 40 50 __

While 2 and 3 for i = k to n
 Set S[i] = S[i + 1]
 Set i = i + 1
 [end loop]
Set n = n - 1
Exit

1

2

3

Perform Binary Search In Array

Suppose we have this array (S) and we have to find 40
lb = 1 , ub = 5
middle index = (5 + 1)/2 = 3
S[middle index] = 30 < 40
So, we will set lb as 4 and ub as 5, Middle index = (5 + 4)/2 = 4
S[middle index] = 40 = Desired element, therefore we will stop
search

Binary search can be applied when the array is sorted
Binary search works like dictionary
To use binary search, we need to find the index of middle element
Middle index = (ub + lb)/2

10 20 30 40 50
1 2 3 4 5

Set start = lb, end = ub
Repeat steps 3 and 5 while start <= end
 Set middle = (start + end)/2
 If S[middle] = data then
 Print “element found”
 Exit
 If S[middle] > data then set
 Start = middle - 1
 Else
 Start = middle + 1
End loop
Exit

1

2

3

4

5

7

6

Difference Between Linear and
Binary Search

 Linear search

 Binary search

 Linear search starts with lower bound

 Binary search starts with middle index

 sequential search, starts at one end
and goes to another through each
 element of array

 Binary search divides the array in half
to search a certain part only

 Also called as sequential search

 Also called as half interval search

 Less efficient

 More efficient

 Sorting is not required

 The array should be sort to perform
binary search

 Complexity is 0(n)

 Complexity is 0(log2n)

 Good if the element is present at the
first index

 Good if the element is present at the
middle index

Explain Bubble Sorting of Array

Sorting of array refers to arrange the elements of the array in some
logical order
this order can be in increasing or decreasing

Here S[1] < S[2] < S[3] < S[4] < S[5]

10 20 30 40 50
1 2 3 4 5

S

3 2 9 4

2 3 9 4

2 3 4 9

Here a loop is executed for n - 1
times
we have used a nested loop which is
executed for certain steps
later we have compared the two
elements and exchanged if required

Repeat For p = 1 to n - 1
 For i = 1 to n - p
 If S[i] > S[i + 1] Then
 Exchange S[i] with S[i + 1]
 [End If]
 [End Loop]
[End Loop]
Exit

1

2

3

4

Explain Linked List

Linked list is the linear collection of elements at nonconsecutive
memory location
In linked list the element/data is stored in a node
Node has two partitions one to store data and another one which
stores address/location of the next node
Last node of the linked list has Null value as the next which defines
end of linked list

The 1st node is held by special pointer known as begin/Start
1st node points to the address of 2nd node i.e., 14764
2nd node points to the address of 3rd node i.e., 5096
This happens till the last node which points to Null value

Perform Traversing in Linked List

Here we check if the linked list is empty or not
if the list is not empty we execute step 2 , Pointer is assigned to the
first node which carries the address of the node
Info part of the current element gets printed and then the pointer is
assigned to the address of next node
once pointer encounters Null value the loop ends

It refers to visiting every element in linked list
Traversing an linked list

If Begin = Null Then
 Print “Linked list is empty”
 Exit
 [End If]
Set Pointer = Begin
Repeat while Pointer != Null
 Print : Pointer -> Info
 assign Pointer = Pointer -> Next
[End Loop]
Exit

1

2

3

4

Searching in Linked List

Here we check if the linked list is empty or not
if the list is not empty we execute step 2 , Pointer is assigned to the
first node which carries the address of the node
we check if the info of the element pointed by the Pointer is equal to
the desired data or not
once pointer encounters Null value the loop ends

If Begin = Null Then
 Print “Linked list is empty”
 Exit
 [End If]
Set Pointer = Begin
Repeat while Pointer != Null
 If Pointer -> Info = Data Then
 print “Element found”
 else
 assign Pointer = Pointer -> Next
[End Loop]
Exit

1

2

3

4

Insertion at Beginning of Linked List

Check if there is memory storage free for node or not
we allocate the new node to the linked list
Data is stored in the Info part of the New node
The New node is inserted at the beginning of the linked list

If Free = Null Then
 Print “No Free space available”
 Exit
[End If]
Allocate space to New
(Set New = Free and Free = Free -> Next)
Set New -> Info = Data
Set New -> Next = Begin and Begin = New
Exit

1

2

3

4

5

Insertion at End of Linked List

If Free = Null Then
 Print “No Free space available”
 Exit
[End If]
Allocate space to New
(Set New = Free and Free = Free -> Next)
Set New -> Info = Data, New -> Next = Null
If Begin = Null then
 Begin = New
 Exit
[End If]
Set Pointer = Begin
Repeat While Pointer -> Next != Null
 Set Pointer = Pointer -> Next
[End Loop]
Set Pointer -> Next = New
Exit

Step 1

Step 2

Step 3
Step 4

Step 5

Step 7
Step 8

Step 6

Deleting node at Beginning of Linked List

Check if the linked list is empty or not
Address of first Node is stored in a variable Pos
The address of 2nd node Is assigned by the Begin
the deleted node is added to the free storage list

If Begin = Null Then
 Print “Linked List is Empty”
 Exit
[End If]
Set Item = Begin -> Info And Pos = Begin
Set Begin = Begin -> Next
Set Pos -> Next = Free and Free = Pos
Exit

1

2

3

4

5

Explain Two Way Linked List

Pre - contains the address of preceding node
Info - contains the data
Next - contains the address of the next node

Here in two way linked list two pointer variable are used - Begin and
End
Begin and End contains the address of the first node and last node
respectively
Pre part of the first node contains Null value
Next part of the last node contains Null Value

Traversing Two Way Linked List

If End = Null Then
 Print “Linked List is Empty”
 Exit
[End If]
Set Pointer = End
Repeat while Pointer != Null
 Print Pointer -> Info
 Set Pointer = Pointer -> Pre
[End Loop]
Exit

1

2

3

4

NOTE : start with explanation of what is two way linked list

Searching in Two Way Linked List

If End = Null Then
 Print “Linked List is Empty”
 Exit
[End If]
Set Pointer = End
Repeat while Pointer != Null
 If Pointer -> Info = Data
 Print “Desired element Found”
 Exit
 Else
 Pointer = Pointer -> Pre
[End Loop]
Exit

1

2

3

4

Insertion at Beginning of Double Linked List

If Free = Null Then
 Print “No Free space available”
 Exit
[End If]
Allocate space to New
(Set New = Free and Free = Free -> Next)
Set New -> Info = Data and New -> Pre = Null
If Begin = Null Then
 New -> Next = Null and End = New
Else
 Set New -> Next = Begin And Begin -> Pre = New
Set Begin = New
Exit

1

2

3

4

5

6

Explain Header Linked List

Header Linked list is a special kind of linked list which contains a
special node at the beginning of the lit
This Special node is called as a head node
This Head node contains some information about regarding the
Linked List
e.g. Number of nodes
Header Linked List can be categorized into 4 parts

Grounded Header Linked List
Circular Header Linked List
Two way Header Linked List
Circular Two way Header Linked List

Grounded Linked List - the last node contains Null in its Next Pointer

Circular Linked List - The last node points back to the Header node

Two Way Header Linked List - A Header node can also be Inserted
in a Two way Linked List

Two Way Circular Header Linked List - The Last node of the Two
way Linked list points back to the Header node

What is Stack?

Stack is also called as ‘LIFO’ (Last In First Out) It means that the
last item added to the stack will be the first item to be removed from
the stack
In Stack Insertion and Deletion takes place from only one end
In Stack insertion operation is called as “PUSH”
and deletion operation is called as “POP”

12
42
83
74

PUSH - Push operation refers to insertion of a
new element into the stack
we can perform PUSH operation only if the
stack is not full i.e. the stack should have
sufficient space for new element
If the stack is already full and when we try to
insert new element it is called as “Stack
Overflow” condition

POP - Pop operation refers to removal of an element from the top
of the stack
We can perform POP operation only if the stack is not empty
We need to make sure that the Stack is not empty before applying
the POP operation
When we try to perform POP operation while the stack is empty it
is called as “Stack Underflow” condition

Array Representation of Stack
PUSH operation

12
42
83
74

12
42
83
74

99

12
42
83
74

If Top = Max then
 print “Stack is already full”
 Exit
[End if]
Set Top = Top + 1
Set S[Top] = Data
Exit

1

2

3

4

12
42
83
74

99

 POP operation

If Top = Null then
 print “Stack is Empty”
 Exit
[End if]
Set Data = S[Top]
Set Top = Top - 1
Exit

1

2

3

4

Linked List Representation of Stack
PUSH operation

12
42
83
74

12
42
83
74

99

12
42
83
74

If Free = Null then
 print “Stack is already full”
 Exit
[End if]
Set New = Free and Free = Free -> Next
Set New -> Info = Data
and New -> Next = Top
Set Top = New
Exit

1

2

3

4

5

12
42
83
74

99

 POP operation

If Top = Null then
 print “Stack is Empty”
 Exit
[End if]
Set Data = Top -> Info and Temp = Top
Set Top = Top -> Next
Deallocate the deleted node Temp to
free storage list
Exit

1

2

3

4

5

Explain Infix Notation in Evaluation of
Arithmetic Expression or Application of
Stack

Infix Notation : in this the operator is placed between its operands
i.e. to multiply m and n we write m x n
While solving the infix notation the main consideration is the
preceding order of the operators and their associativity
for example

e = q x r + s

In This expression, the following is the preceding rule
q and r will be multiplied and then will be added to s
which means that x (multiplication) has preceding more than +
(Addition)

Priority Operator Associativity

1st Brackets () []
Inner to out
left to right

2nd Exponent ^ left to right

3rd */ Left to right

4th +- Left to right

5th = Left to right

Explain Prefix and Postfix Notation in
Evaluation of Arithmetic Expression

In Prefix notation, Operator is place before its operands
for example, when we multiply m and n we write it as xmn

(a - b)/c
(-ab)/c
/ -abc

Postfix notation is also know as ‘reverse polish notation’
in this notation the operator is place after the operands

(a - b)/c
(ab-)/c
ab- c/

Evaluation of Postfix Notation

Scan P from left to right and repeat step 2 and
3 till the end of expression
If scanned character is a Operand push it into
the stack
If the scanned character is a operator then pop
the two top elements (a and b) which are
operands, apply the operator to these
operands and push the result into the stack
[End Loop]
Set Value = Stack[Top]
Print “the value of the expression is ” : Value
Exit

1.

2.

3.

4.

5.

6.

7.

Explain Recursion

Recursion is very important and powerful tool for developing
algorithms for various problems, Recursion has the ability to call
itself or to call itself or calling some other procedure which may
result in calling the original procedure
There are two very important conditions or we can say
requirements which must be satisfied by any procedure to be
defined recursively :

There must be a certain decision or conditional
statement which can stop the further call of
procedure
Each time the procedure calls itself it must be
nearest to the solution

Recursive functions can be implemented in various programming
languages but some compilers are not able to handle recursive
procedures, because they do not contain a stack mechanism
Programming languages like C, C++ can be used to implement
recursive procedures

Factorial Function in data structure

The factorial of a positive number ‘n’ is the product of positive
numbers from 1 to n
factorial of a number is represented by place a ‘!’ next to the
number
e.g. 5!
The factorial of a positive number ‘n’ will be defined as

n! = 1 x 2 x 3 x 4 x (n - 1) x n

The factorial of zero is taken as 1
here are factorial of some positive numbers

3! = 3 x 2 x 1 = 6
4! = 4 x 3 x 2 x 1 = 24
5! = 5 x 4 x 3 x 2 x 1 = 120
6! = 6 x 5 x 4 x 3 x 2 x 1 = 720

Write a algorithm to find Fibonacci
series to the nth term recursively

 if n == 0:
 return 0

 elif n == 1:
 return 1

 else:
 return fibonacci(n - 1) + fibonacci(n - 2)

fibo = fibonacci(n)

fibonacci(n):

Explain QUEUE

Queue is a Linear collection of elements in which insertion takes
place at one end known as “rear” and deletion takes place at
another end known as the “front” of the queue
The elements of the queue are processed in the same order as they
were added into the queue, that’s why queue is also known as FIFO
(First in First out)
Two types of operations are performed in a queue

Insertion (rear)
Deletion (front)

If the queue is already full and when we try to insert new element in
the queue this condition can be called as “Overflow” condition
If the queue is empty and if we try to delete an element from the
queue this can be called as “Underflow” condition

Insertion in Queue (Array)

If Front = 1 and Rear = n Then
 Print “Queue is full, overflow condition”
 Exit

If Front = Rear + 1
 Print “Queue is full, overflow condition”
 Exit

If Rear = Null then
 Set front = 1 and Rear = 1
Else if Rear = n then
 set Rear = 1
Else
 Rear = Rear + 1

Set Q[Rear] = Data
Exit

1

2

3

4

5

Deletion in Queue (array)

If Front = Null Then
 Print “Queue is Empty, underflow condition”
 Exit

Set Data = Q[Front]

If Front = Rear then
 // Queue has only one element
 Set Front = Null and Rear = Null
Else if Front = n then
 Set Front = 1
Else
 Set Front = Front + 1

Exit

1

2

3

4

Explain Deque

Instead of using notation of Front and rear we use end1 and end2
to represent the index of the two ends of the queue
An element can be inserted either at the end1 or at end2
similarly the element can be deleted from the end1 or end2
The Dequeue can be categorized into Two types

Input Restriction Deque : In this case the input is
restricted from one end but the deletion can take place
at both ends
Input is taken from one end and deletion is done from
both ends
Output Restriction Deque : In this case the deletion
operation is restricted to one end but the insertion can
take place from both ends
Here, input is taken from both ends and the deletion is
done from only one end

10 20 30 40 50__ __
end1 end2

__

Explain Priority Queue

Priority Queue is the kind of queue data structure in which insertion
and deletion operation are performed according to some special
rule rather than FIFO
there are three ways to represent priority queue

Priority queue using linked list
priority queue using multiple queues
priority queue using heap structure

Priority Queue using linked list :
in this priority queue the node of the linked list is divided
into three parts
Info : this part contains the data element
Priority : this part hold the priority number of the element
Next : this part holds the address of the next node

Info

Priority
Number

Next

Priority Queue using Multiple Queues :
A Priority Queue using Multiple Queues is a data
structure that manages elements with different priorities
by maintaining multiple queues, each representing a
distinct priority level.
Elements with higher priorities are removed from the
queue before those with lower priorities, allowing for
efficient access and removal of items based on their
importance.

Priority Queue using heap structure :
A Priority Queue using a heap structure is a data
structure that maintains a binary heap, typically
implemented as a min-heap or max-heap, to efficiently
manage elements based on their priority.
In a min-heap, the smallest element is always at the
root, while in a max-heap, the largest element holds this
position, allowing for fast retrieval of the highest or
lowest priority item.

Explain the types of Hashing Methods

Mid Square Method
Division Remainder Method
Folding Method
Shifting Method

Mid Square Method
in this method the key value is squared and the digits
are taken from the middle of the squared value
This middle 3 digits values of the square of the key is
the Relative address

Key value Square of Key vale Relative address

5010 25100100 100

5016 25160256 160

5301 28100601 100

5400 29160000 160

Division Remainder Method
in this method the the addresses are n=mapped by dividing
the key values by the number of available addresses and
the remainder is taken as the relative address

Key value
Remainder after dividing the

key by 997

1098 101

1120 123

1185 118

1230 233

Folding Method : in this method the key value is divided into equal
number of parts except the last part, the first 3 digits and last 3
digits are reversed and added with the 3 digits in the middle and
adjusted after ignoring the final carry
Example 8 digit key value 51421673

1 5 0

4 2 1

3 7 6

9 4 7

Shifting Method : The Key value is divided into 2 parts and added to
each other ignoring the carry to make the address equal to the size
of the divided parts
Key 35367312

3 5 3 6

7 3 1 2

0 8 4 8

What is Open Addressing In Hashing

Open addressing in data structures is a collision resolution
technique used in hash tables.
When a collision occurs (two elements hash to the same location),
open addressing finds the next available slot in the hash table to
place the item,
there are 3 types of open addressing techniques

linear Probing
Quadratic Probing
Double probing

‘K’ : value of keys
‘p’ : probing (can be 0,1,2,.., m-1)
‘m’ : size of array
‘c’ : constant
H(K) = K mod m
Linear Probing

Linear probing is a collision resolution technique in hash tables
where, upon a collision, it searches for the next available slot by
incrementing linearly until an empty slot is found.
Hash(K, p) = [H(K) + p] mod m

Quadratic Probing
Quadratic probing is a collision resolution technique in hash
tables where, upon a collision, it searches for the next available
slot by incrementing quadratically until an empty slot is found
Hash(K, p) = [H(K) + C1p + C2p^2] mod m

Double Probing
Double probing is a collision resolution technique in hash tables
where, upon a collision, it uses a secondary hash function to
calculate the step size for probing to find the next available slot.
Hash(K, p) = [H1(K) + pH2(K)] mod m

i.
ii.
iii.

What is Linear Probing? with example

Linear probing is a collision resolution technique in hash tables
where, upon a collision, it searches for the next available slot by
incrementing linearly until an empty slot is found.

Hash(K, p) = [H(K) + p] mod m

p is probe number which can be 0,1,2,..., m-1
n is the size of the hash table
Keys : 33, 101, 99

K = 33
Hash(K, p) = [H(K) + p] mod m
Hash(K, p) = [33 mod 10 + 0] mod 10
Hash(K, p) = 3 mod 10
Hash(K, p) = 3

K = 101
Hash(K, p) = [H(K) + p] mod m
Hash(K, p) = [101 mod 10 + 0] mod 10
Hash(K, p) = 1 mod 10
Hash(K, p) = 1

K = 99
Hash(K, p) = [H(K) + p] mod m
Hash(K, p) = [99 mod 10 + 0] mod 10
Hash(K, p) = 9 mod 10
Hash(K, p) = 9

__
33
__

__

__
__
__

99

101

__0

1

2

3

4

5

6

7

8

9

Explain Quadratic Probing, With Example

Quadratic probing is a collision resolution technique in hash tables
where, upon a collision, it searches for the next available slot by
incrementing quadratically until an empty slot is found

Hash(K, p) = [H(K) + C1p + C2p^2] mod m

p is probe number which can be 0,1,2,3,..., m-1
m is size of hash table
c1 and c2 are constant vales
Let key values be 33,101, and 93

K = 33
Hash(K, p) = [H(K) + C1p + C2p^2] mod m
Hash(K, p) = [33mod10 + 0 + 0] mod 10
Hash(K, p) = 3 mod 10
Hash(K, p) = 3

K = 101
Hash(K, p) = [H(K) + C1p + C2p^2] mod m
Hash(K, p) = [101mod10 + 0 + 0] mod 10
Hash(K, p) = 1 mod 10
Hash(K, p) = 1

K = 93
Hash(K, p) = [H(K) + C1p + C2p^2] mod m
Hash(K, p) = [93mod10 + 0 + 0] mod 10
Hash(K, p) = 3 mod 10
Hash(K, p) = 3

__
33
__

__

__
93
__

__

101

__0

1

2

3

4

5

6

7

8

9

The record 93 should be place at position 3 in hash table
but this position is occupied by other record
so we will increase the probing by 1

K = 33
Hash(K, p) = [H(K) + C1p + C2p^2] mod m
Hash(K, p) = [33mod10 + 3 x 1 + 1 x 1] mod 10
Hash(K, p) = [3 + 3 + 1]mod 10
Hash(K, p) = 7

__
33
__

__

__
93
__

__

101

__0

1

2

3

4

5

6

7

8

9

Explain Double Hashing With Example

Double probing is a collision resolution technique in hash tables
where, upon a collision, it uses a secondary hash function to
calculate the step size for probing to find the next available slot.

Hash(K, p) = [H1(K) + pH2(K)] mod m

p is probe number which can be 0,1,2,3,..., m-1
m is size of hash table
H1(K) = K mod m
H2(k) = K mod m’
m’ < m
Let key values be 33,103, and 93

K = 33
Hash(K, p) = [H1(K) + pH2(K)] mod m
Hash(K, p) = [33 mod 10 + 0 x 33 mod 8] mod 10
Hash(K, p) = 3 mod 10
Hash(K, p) = 3

K = 93
Hash(K, p) = [H1(K) + pH2(K)] mod m
Hash(K, p) = [93 mod 10 + 0 x 93 mod 8] mod 10
Hash(K, p) = 3 mod 10
Hash(K, p) = 3

__
33
__

__

__
__
93

__

103

__
0

1

2

3

4

5

6

7

8

9
93 should be stored at position 3 in hash
table which is already occupied by other
element so we increase the probing by 1

K = 93
Hash(K, p) = [H1(K) + pH2(K)] mod m
Hash(K, p) = [93 mod 10 + 1 x 93 mod 8] mod 10
Hash(K, p) = [3 + 1 x 5] mod 10
Hash(K, p) = 8

__
33
__

__

__
__
93

__

103

__
0

1

2

3

4

5

6

7

8

9

So 93 will be stored at position 8 in hash
table

K = 103
Hash(K, p) = [H1(K) + pH2(K)] mod m
Hash(K, p) = [103 mod 10 + 0 x 103 mod 8] mod 10
Hash(K, p) = [3] mod 10
Hash(K, p) = 3

103 should be stored at position 3 in hash
table which is already occupied by other
element so we increase the probing by 1

K = 103
Hash(K, p) = [H1(K) + pH2(K)] mod m
Hash(K, p) = [103 mod 10 + 1 x 103 mod 8] mod 10
Hash(K, p) = [3 + 7] mod 10
Hash(K, p) = 0

so 103 will be stored at location 0

Explain Bucket Hashing With Example

Bucket hashing is a type of collision resolution technique which is
used to avoid collision of values/keys ate the same positions
The bucket is simply a large space used to hold multiple records,
the address space is divided into multiple buckets
‘M’ Addresses of the address space are divided into ‘B’ buckets
these buckets are further divided into slots
the number of slots in each bucket = M/B
For example the Hash table with 20 addresses which are divided
into 5 buckets will have 20/5 = 4 slots in each bucket

For 1st key, K=22, the bucket
address generated
will be:
H(K) = K mod m
H(22) = 22 mod 5
= 2 mod 5

= 1

= 2

For 2nd key, K=101, the
bucket address generated
will be:
H(K) = K mod m
H(101) = 101 mod 5
= 1 mod 5

What is Graph?

A graph G consist of finite number of vertices/nodes (V) and finite
number of Edges/Path (E) which can be denoted as G = (V E)
Here set of vertices V represent the entities which has some name,
an Edge is a line that connect a pair of vertices

In directed graph each edge is assigned a direction

The outdegree of the vertex V in directed graph is the number of
Edges going out from the Vertex, while Indegree are the number of
Edges Coming to the Vertex

Adjacency Matrix Representation of Graph

Initially, the entire Matrix is ​​initialized to 0. If there is an edge from
source to destination, we insert 1 to both cases

Initially, the entire Matrix is ​​initialized to 0. If there is an edge from
source to destination, we insert 1 for that particular destination

Linked List Representation of Graph

The below undirected graph has 3 vertices. So, an array of list will be
created of size 3, where each indices represent the vertices. Now,
vertex 0 has two neighbours (i.e, 1 and 2). So, insert vertex 1 and 2 at
indices 0 of array. Similarly, For vertex 1, it has two neighbour (i.e, 2
and 1) So, insert vertices 2 and 1 at indices 1 of array. Similarly, for
vertex 2, insert its neighbours in array of list.

The below directed graph has 3 vertices. So, an array of list will be
created of size 3, where each indices represent the vertices. Now,
vertex 0 has no neighbours. For vertex 1, it has two neighbour (i.e, 0
and 2) So, insert vertices 0 and 2 at indices 1 of array. Similarly, for
vertex 2, insert its neighbours in array of list.

Explain BFS (Breath First Search)

Starting from the root, all the nodes at a particular level are visited
first and then the nodes of the next level are traversed till all the
nodes are visited.
To do this a queue is used. All the adjacent unvisited nodes of the
current level are pushed into the queue and the nodes of the
current level are marked visited and popped from the queue.

Add 0 to the queue
We Visit the 0 first and we will
mark it as visited
Remove 0 from queue
We will then visit the neighbors
of 0 (i.e. 1 and 2)
Add 1 and 2 in the queue
we visit 1 and 2 respectively
and mark them as visited
Remove both 1 and 2
Add next of 1 to the queue (3)
Visit the unvisited neighbor of 1
(i.e., 3)
Remove 3 from the queue
mark 3 as visited
Add next of 2 to the queue
Visit the neighbor of 2 (i.e.,4)
remove 4 from the queue
mark 4 as visited

Add 0 to the queue
We Visit the 0 first and we will
mark it as visited
Remove 0 from queue
We will then visit the neighbors
of 0 (i.e. 1, 2 and 3)
Add 1, 2 and 3 in the queue
we visit 1 and mark it as visited
Remove 1 from queue
as we cannot go further than 1
we will go to 2
mark 2 as visited and remove 2
from queue
We can go to 4 from 2 so we
will add 4 to the first at the
queue
visit 4, mark 4 as visited and
remove 4 from the queue
visit 3, mark 3 as visited and
remove 3 from queue

Explain DFS (Deep First Search)

Depth-first search is an algorithm for traversing or searching graph
data structures. The algorithm starts at the root node (selecting
some arbitrary node as the root node in the case of a graph) and
explores as far as possible along each branch before backtracking.

Explain Prims Algorithm

Prim's algorithm, also known as Prim's minimum spanning tree
algorithm, is a greedy algorithm used to find the minimum spanning
tree (MST) of a connected, undirected graph.
A minimum spanning tree is a subgraph of the original graph that
includes all the vertices and a subset of the edges in such a way
that it forms a tree (i.e., there are no cycles) and has the minimum
possible total edge weight.

Start with a weighted graph
Choose a vertex
Choose the shortest edge from this vertex and add it
Choose the nearest vertex not yet visited
Choose the nearest edge not yet visited, if there are multiple
choices, choose one at random
Make sure there is no loop while connecting the vertexes
Repeat until you have a spanning tree (Edges = Vertex - 1)

Explain Selection Sorting with Example

Selection sorting algorithm is also called as in-place comparison
sort
in-place means that this algorithm does not take extra space for
sorting the elements of the array
in this algorithm the smallest element of the array is replace with the
element at the first position
Then the second smallest element is swapped with the element at
2nd position
this process continues until the entire array is sorted

22 05 17 2335

2205 17 2335

2205 17 2335

2205 17 23 35

1st step : 5 is the smallest element so we will exchange its position
with the element at position 1
2nd Step : 17 is the second smallest element so we will exchange
its position with element at position 2
We will continue this until the entire array is sorted

Selection Sorting algorithm

for (i = 0 ; i < n-1 ; i++)
{
 int min = 1
 for (j = 1 ; j <n ; j++)
 {
 if (a[j] < min)
 {
 min = j;
 }
 if (min! = 1)
 {
 swap (a[i] , min)
 }
 }
}

