
Free and Open Source - Python language is freely available at the
official website

Easy to code - Python is a high-level programming language. Python is
very easy to learn the language as compared to other languages like C,
C#, Javascript, Java, etc.

Easy to Read - learning Python is quite simple

Object-Oriented Language - Python supports object-oriented language
and concepts of classes, object encapsulation, etc.

GUI Support
Large Community Support
Easy to Debug
Portable language
Frontend and backend development

Python is a dynamic, high-level, free open source, and interpreted
programming language. It supports object-oriented programming as well as
procedural-oriented programming.

What is Python? List and explain feature
of Python.

https://www.geeksforgeeks.org/python-programming-language/
https://www.geeksforgeeks.org/difference-between-high-level-and-low-level-languages/

Write a programe to perform pallindrome
of string and number.

num = 123
org = num
rev = 0

while num != 0:
 rem = num % 10
 rev = (rev * 10) + rem
 num = int(num/10)

if rev == org:
 print("Is palindrome")
else:
 print("Not palindrome")

In python we can convert the data type of variable using some built in
function

This is useful if you want to convert any value to a different type
int() : converts value to integer
float() : converts value to float
str() : converts value to string

we can also convert sequence data types like list, tuple and set
list() : converts a sequence to list
tuple() : converts a sequence to tuple
set() : converts a sequence to set

Explain type conversion of variable in
Python.

a = 10

x = str(a) # "10"
x = int(a) # 10
x = float(a) # 10.0

In Python, the `if...else` statement is used for conditional execution of
code. It allows you to execute a specific block of code if a certain
condition is true, and another block of code if the condition is false.
Here's an explanation with an example:

Explain if…else statement with example.

num = 7

if num % 2 == 0:
 print(num," is even")
else:
 print(num," is odd")

Example: Checking if a number is even or odd

output : 7 is odd

In this example, we're checking whether the number stored in the
variable `num` is even or odd. The condition `num % 2 == 0` checks if
the remainder of the division of `num` by 2 is equal to 0. If the condition
is true, the code within the first block will be executed, which prints that
the number is even. If the condition is false, the code within the `else`
block will be executed, which prints that the number is odd.

In python break statement is used to exit the loop when a certain
condition is true

Explain break with example

example of break

for i in range(1,11):
 print(i)

 if i == 5:
 break

output : 1 2 3 4 5

In this example we are using a for loop to print numbers from 1 to 10 (<
11)
Here, If condition is given as i == 5, so, when the value of i will be 5 the
loop will be terminated
The loop terminates after printing "5" because the `break` statement is
encountered when `i` is equal to 5. As a result, the loop stops, and the
iteration that would print numbers 6 through 9 is not executed.

List: A list is an ordered collection of items that can hold elements
of various data types. Lists are mutable, meaning you can modify
their contents after they are created.

my_list = [1, 2, 'hello', 3.14, True]

Set: A set is an unordered collection of unique elements. Sets are
useful for eliminating duplicate values. Sets are mutable.

my_set = {3, 1, 4, 1, 5}
#Duplicate value '1' is ignored

Tuple: A tuple is an ordered collection of elements, similar to a list.
However, tuples are immutable, meaning their contents cannot be
changed once they are created. Tuples are often used to represent
data that shouldn't be modified.

my tuple = (10, 'apple', 3.14)

Explain list, set and tuples with
example of each

Parentheses `()` - Parentheses are used primarily for grouping and
controlling the order of operations in expressions and function
calls. They are also used to define tuples, call functions, and create
generator expressions.

Difference between bracket, braces
and parantheses

Brackets `[]` - Brackets are used for creating lists, indexing lists

Braces `{}` - Braces are mainly used to define dictionaries and sets
.

result = (2 + 3) * 4
print("Hello, world!")
my_tuple = (1, 2, 3)

my_list = [1, 2, 3]
first_element = my_list[0]
 # Accesses the first element of the list

my_dict = {'name': 'Alice', 'age': 30}
my_set = {1, 2, 3}

Defining a Function:
To define a function, you use the `def` keyword followed by
the function name, a pair of parentheses `()`, and a colon
`:`
Any code you want the function to execute is indented
inside the function definition.

How to define and call functions in python?

Calling a Function:
To call a function, you use the function name followed by
parentheses `()` containing the required arguments (if any).

def show():
 print("Hello world")

show()

Python program to perform recursion

example of a recursive function for factorial of a number:

def factorial(n):
 if n == 0 or n == 1:
 return 1
 else:
 return n * factorial(n - 1)

num = 5
result = factorial(num)
print("The factorial of",num,"is",result)

output : The factorial of 5 is 120

Concatenation (+) - You can concatenate (join together)
two or more strings using the + operator

Explain various string operations that can be
performed using operators in Python.

Repetition (*) - You can repeat a string multiple times using the *
operator

Membership (in, not in): - You can check if a substring exists in a
string using the in and not in operators.

str1 = "Hello"
str2 = "World"
result = str1 + str2
print(result) # Output: "Hello World"

text = "Repeat me! "
print(text * 3)
Output: "Repeat me! Repeat me! Repeat me! "

text = "Hello, World"
print("Hello" in text) # Output: True

Indexing and Slicing - You can access individual characters in a
string by indexing, You can extract substrings from a string using
slicing

text = "Python"
text[0]
text[0:4]

Explain inheritance with its types.

Inheritance is a concept in object-oriented programming (OOP) that
allows a new class to inherit properties and behaviours (attributes
and methods) from an existing class. The existing class is referred to
as the "base class" or "parent class," and the new class is the
"derived class" or "subclass" or “Child class”

Single Inheritance

class Animal:
 pass

class Dog(Animal):
 pass

Multiple Inheritance - -A class is derived from two or more class

class A:
 pass

class B:
 pass

class C(A, B):
 pass

Multilevel Inheritance - -A class is derived from another derived
class

class A:
 pass

class B(A):
 pass

class C(B):
 pass

Dictionary in python is used to store key value pair
Each key is associated with a value
Dictionaries are created using {} and with key-value pairs
separated by colons “:”

What is dictionary? How is it created?

my_dict = {
"name": "Alice",
"age": 30,
"occupation": "engineer"
}

Here “name” “age” and “occupation” are all keys
Whereas “Alice”, 30 and “engineer” are values associated
to the keys

Write a programe for Febonacci Series

n = int(input("Enter the range :
"))
a = 0
b = 1
c = a + b

for i in range(n):
 print(a)
 a = b
 b = c
 c = a + b

output : Enter the range : 5
0 1 1 2 3

Explain Python Modules

Modules is same as code library
There are two types of modules (user defined and built in)
Userdefined modules are the one which the user creates
Builtin modules are already avaliable in the python
eg. Math module
dir() funtion is used to list down all the functions in the modules

min()
Returns minimum/lowest value
print(min(5,6,7,2,45))
=> 2

max()
Returns maximum/greatest value
print(max(5,6,7,2,45))
=>45

abs()
Returns absolute(positive) value of the number
abs(-30)
=>30

pow()
pow(x,y) returns the value of x to power of y
pow(4,2)
=>16

When a child class have a method which is already defined
in parent class this method gets overridden by the child
class method this is called as method overriding

What is method overriding?

class Parent():
 def show(self):
 print("inside parent")

class Child(Parent):
 def show(self):
 print("inside Child")

obj = Child()
obj.show() #this will call the method of child class

output : inside Child

Here we have a child class which is derived by the parent
class
Both the classes have show() method
When object of Child class is created the show() method of
a Parent class is overridden by the show() function of the
Child class

For loop loops a block of code as per the range mentioned to it
In for loop, we can use range, list, set, tuple etc
range in for loop takes 3 parameters, out of which 2 are optional
range(start, end, increment)

start : start of the range, if not mentioned range starts with 0
end : end of the range (does not count end)
increment : increments the range by 1

Explain For loop in Python

for i in range(1,6):
 print(i)

starts from 1 and ends at < 6 (less than 6 = 5)
output 1 2 3 4 5

for i in range(6):
 print(i)

starts with 0 and ends with 5
output 0 1 2 3 4 5

for i in range(1,6,2):
 print(i)

starts with 1 and ends with 5, increments with 2
output 1 3 5

 Array

 List

 Tuple

 Set

 Dictionary

 []

 []

 ()

 {}

 {}

 ordered

 ordered

 ordered

 unordered

 Ordered

 changeable

 Changeable

 unchangeable

 Unchangeable
 but you can add
or remove
elements

 changeable

 Elements of
Similar datatype

 Elements of
different datatype

 Elements of
different datatype

 Elements of
different datatype

 Elements of
different datatype

 Allows
 duplicates

 Allow
 duplicates

 Allow
 duplicates

 No
 duplicates
allowed

 No
 Duplicate keys

Difference Between Array, List, Tuple, Set
and Dictitonary

Explain Array and List functions

 append()

 Adds
 element at the end of the array or list
 a.append(‘abc’)
 this will add element ‘abc’ at the end of the array or list

 pop()

 will delete the element at the given index
 a.pop(2) this will remove the element at index 2

 len()

 Will return the length of/ number of elements in the array
or list,
 print(len(my_list))

 remove()

 It will remove the particular element in the array
 or list
 a.remove(“abc”) this will remove ‘abc’ from the
 array or list
 note : in pop() index is given

 clear()

 It
 will clear the whole array or list

 copy()

 It is used to copy the whole array or list into
 another list
 b = a.copy()
 elements of ‘a’ are stored in ‘b’

 count()

 Returns
 the number of times the element occurs in the list or array
 a.count(10)
 this will return the count of how many 10s are present in the
array or list

 extend()

 It is used to merge two list or array
 a.extend(b) elements of ‘b’ gets added into ‘a’

 index()

 Will
 return the index of the element
 a.index(‘cherry’)
 will give the index of element cherry in ‘a’

 insert()

 Will insert new element at the given position
 a.insert(2,”orange”) this will insert orange at
 index 2

 reverse()

 This
 is used to reverse the array or list
 a.reverse()

 sort()

 Sorts the list or array in ascending order (shortest
 to largerst)
 a.sort()

Explain Set functions

 add()

 Adds element in the set
 a.add(‘orange’)
 this will add element ‘orange’ in the set

 update()

 Adds elements of one set to another
 a.update(b)

 len()

Will return the length of/ number of elements in the set
 print(len(a))

 remove()

 It will remove the particular element in set
 a.remove(“orange”) this will remove ‘orange’ from
 the set will show error if the element is not in set

 discard()

 Works just like remove()
 But this will not show error if the element is not in set
 a.discard(“orange”)

 pop()

 Will remove a random element as set does not have
 indexes
 a.pop()

 clear()

will clear the whole set a.clear()

 del

 Will
 remove the set completely
 del
 my_set

 union()

 Will return new set will all the items from both set
 c = a.union(b)

 difference()

 Returns
 set containing the difference between two sets
 z =
 a.difference(b)

 difference_update()

 Removes the items in a set that are also in another
 set, eliminates common items
 a.difference_update(b)

 intersection()

 Returns
 common items in two sets
 z =
 x.intersection(y)

 intersection_update()

 Removes items from the set which are not in
another
 set, keeps only common items
 a.intersection_update(b)

 isdisjoint()

 Checks
 if the two sets have any common element in it or not
 z =
 x.isdisjoint(y)
 returns
 true if there is no intersection

 issubset()

 Checks if the set is subset of another set or not
 z = x.issubset(y)
 returns true if set1 is subset of set2

 issuperset()

 Checks
 if the set is superset of another set or not
 z =
 x.issuperset(y)
 returns
 true if set1 is superset of set2

Explain Dictionary functions

 values()

 It
 will return the list with the values of dictionary
 x =
 my_dict.values()

 items()

 Will return list of all the items (key: value pair)
 x = my_dict.items()

 keys()

 Will
 return list of all the keys of dictionary
 x =
 my_dict.keys()

 update()

 Used to change the value of key in dictionary
 my_dict.update({“year” : 2000})
 here we changed the value of year to 2000

 it can also be used to add new elements in the
 dictionary

 pop()

 Will
 remove item with key name from the dictionary
 my_dict.pop(“year”)
 this
 will remove year key from the dictionary

Explain Dictionary functions

 popitem()

 Removes last added item from the dictionary
 my_dict.popitem()

 del

 Removes
 specific key or even the whole dictionary
 del
 my_dict[“year”] removes year
 del
 my_dict
 deletes
 whole dictionary

 clear()

 Clears the whole dictionary

 copy()

 Copies
 all the elements of one dictionary to another
 a =
 b.copy()

In python Class is defined using “class” key work followed by class
name and colons(:)
The methods and properties are defined inside of this class
definition
All these methods and properties are public by default
We can access these by creating objects of the class

Explain concept of OOPs in Python

class New:
 def my_function(self):
 print("hello world")

obj = New()
obj.my_function()

Constructor - In python constructor is
defined using __init__ function
Constructor gets called every time
class object is created
We can pass parameters in
constructor while creating objects

class New:
 def __init__(self):
 print("hello world")

obj = New()

inheritance - Inheritance allows us to
create a new class based on the
existing class
This new class is called as “subclass”
or “derived” or “child class” it carries
all the public and protected methods
and properties of the parent class

class Parent:
 def my_function(self):
 print("hello world")

class Child(Parent):
 pass

obj = Child()
obj.my_function()

Difference Between Public, Private and
protected data functions and members

 Public

 All methods and properties are public by default
 Public methods and properties can be accessed
out of the class by the class objects

 Protected

 Protected methods and properties can be defined
by using a single underscore (_)

 e.g.,
 _name
 def _myfunction():

 protected methods and properties can only be
accessed
 within the class and by the class which are
inherited by the class

 Private

 private methods and properties can be defined by
using a double underscore (__)

 e.g.,
 __name
 def__myfunction():

 private methods and properties can only be
accessed within the class

Explain File Handling in short

 open()

 Used to open file Cannot open file in read format if file does not exist
 f.open(“demo.txt”, ”r”)

 close()

 Close the file after opening
 f.close()

 read()

 Used to read the content in the file, we can specify how many characters to read
 f.read(5) this will read 5 characters

 readline()

 This function will only read one line in the file We can read multiple lines by
calling readline() multiple times
 f.readline()

 write()

 Used to write or append in the file only if the file is opened in “w” or “r” format
 f.write(“helloworld”)
 this will write “hello world” in the file

open() funtion is used to open files while working with files
there are some types of opening files

‘r’ read mode, will show error if the file does not exist
‘w’ write mode, will create file if the file does not exist
‘a’ append mode, opens file for appending will create file if file
does not exist

f = open("demo.txt","r")

f = open("D:\\myfiles\welcome.txt","r")
if the file is in another folder, we have to write the whole
path

Explain Regular Expressions

A RegEx, or Regular Expression, is a sequence of characters that
forms a search pattern.
Regular Expression can be used to check if a string contains the
specified pattern
‘re’ module can be used to work with regular expressions

import re

Explain GUI in Python

GUI, which stands for Graphical User Interface, refers to the visual
elements and interactive components of a software application that
allow users to interact with the program using graphical elements
such as windows, buttons, icons, and menus, rather than solely
relying on text-based commands.

Tkinter is a standard builtin library of Python

Features of Tkinter
simple to learn - Tkinter is easy to use

widgets - Tkinter provides GUI widgets that can be used as a
interface

buttons - to trigger actions
labels - to display text
entry - for user input
frames
menus - dropdown list
canvas - for drawing shapes
checkboxes and radio buttons - for choices
scrollbars

layout management

customization - we can customize colors, fonts and sizes

Tkinter Program to create a window with
labels and buttons

import tkinter as tk

def button_click():
 label.config(text="Button Clicked!")

Create a window
root = tk.Tk()
root.title("Tkinter Example")

Create a label
label = tk.Label(root, text="Hello, Tkinter!")
label.pack()

Create a button
button = tk.Button(root, text="Click Me!",
command=button_click)
button.pack()

Start the GUI event loop
root.mainloop()

